Mark Scheme (Results)
 November 2009

IGCSE

IGCSE Mathematics (4400)
Paper 4H Higher Tier

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

November 2009
Publications Code UG022381
All the material in this publication is copyright
© Edexcel Ltd 2009

November 2009 IGCSE Mathematics (4400) Mark Scheme - Paper 4H

Except for questions * where the mark scheme states otherwise the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.
[* Questions 2(b), 21 and 22]
Trial and improvement methods for solving equations score no marks, even if they lead to a correct solution.

Q	Working	Answer	Mark	Notes
1.	$\frac{350.26}{0.3}$		2	M1 for 350.26
		1167.5333		A1Accept 1dp or better
			Also accept 1167.53 or $\frac{17513}{15}$	

2. (a)		$n(n-4)$	2	B2	B1 for factors which, when expanded and simplified, give two terms, one of which is correct except $(n+2)(n-2)$ and similar SC B1 for $\mathrm{n}(\mathrm{n}-4 \mathrm{n})$
(b)	$\begin{aligned} & 5 x=8-2 \text { or }-5 x=2-8 \\ & \text { or } 5 x=6 \text { or }-5 x=-6 \end{aligned}$		3	M2	M1 for $5 \mathrm{x}+2=8$
		$1 \frac{1}{5}$ oe		A1	dep on M2 Do not accept $\frac{-6}{-5}$
					Total 5 mark

Q	Working	Answer	Mark	Notes	
3. (a)(i)		62	2	B1	cao
(ii)		alternate angles		B1	Accept 'alternate' but not 'Z angles'
(b)	$\frac{180-\text { " } 62 \text { " }}{2}$ or $\frac{180-62}{2}$ or 59		2	M1	
		121		A1	cao
					Total 4 marks

4. (a)	$1-(0.4+0.5)$		2	M1
		0.1		A1
			Also accept $\frac{0.1}{1}$	
	0.4×80 or $\frac{\mathrm{n}}{80}=0.4$		2	M1
		32		A1
		cao		

Q	Working	Answer	Mark	Notes		
6. (a)		Reflection in the line $\mathrm{y}=4$	2	B2	B1 for reflection, reflects etc B1 for $y=4$ or eg 'dotted line' but, if given, equation must be correct	These marks are independent but award no marks if answer is not a single transformation. (Second transformation may be implied)
(b)		Enlargement with scale factor $11 / 2$, centre $(1,6)$	3	B3	B1 for enlargement, enlarge etc B1 for $11 / 2$ oe B1 for $(1,6)$	
				Total 5 marks		

7.	$1+9+2$ or 12 or 5 seen		3	M1
		$5 \quad 10 \quad 45$		May be implied by 1 correct answer
				A1 for one correct

8.	Arcs of equal radii $>1 / 2 \mathrm{AB}$, centres A, B, which intersect twice	$\mathbf{2}$	M1	
	Perpendicular bisector within guidelines		A1	

Q		Working	Answer	Nark
9. (a)			Correct line	2

10. (a)	6.2	C	$5 \times 23+15 \times 3+25 \times 2+35 \times$ 3 $=115+45+50+105$		3	M1for finding at least 3 products $\times \times f$ consistently within intervals (inc end points)

Q	Working	Answer	Mark	Notes	
11. (a)	$\begin{aligned} & 64=2^{6} \text { and } 80=2^{4} \times 5 \\ & \text { or } 1,2,4,8,16,32,64 \\ & \text { and } 1,2,4,5,8,10,16,20,40,80 \\ & \text { or } 2^{4} \end{aligned}$		2	M1	Need not be product of powers; accept products or lists ie 2,2,2,2,2,2 and 2,2,2,2,5 Prime factors may be shown as factor trees or repeated division
		16		A1	cao
(b)	$\begin{aligned} & 2^{6} \times 5 \text { oe eg } 2^{4} \times 4 \times 5,16 \times 4 \times 5 \\ & \text { or } 64,128,192,256,320 \\ & \text { and } 80,160,240,320 \\ & \hline \end{aligned}$		2	M1	
		320		A1	cao
					Total 4 marks

12. (a)	$p^{2}-4 p+7 p-28$	2	M1for 4 correct terms ignoring signs or for 3 terms with correct signs	
		$p^{2}+3 p-28$		A1
	cao			
(b)		$12 x^{5} y^{6}$	2	B2
B1 for any two parts correct				
(c)		$9 q^{4}$	2	B2
	B1 for either 9 or q^{4}			

13. (a)	$18 \times \frac{15}{12}$		2	M1
			for $\frac{15}{12}(1.25)$ oe or $\frac{18}{12}(1.5)$ oe seen	
	(b)	eg $20 \div \frac{15}{12}, 20 \times \frac{12}{15}, 12 \times \frac{20}{15}$		2
			M1	for eg $20 \div 1.25,20 \times 0.8,12 \times 1.3$
				A1
	cao			

Q	Working	Answer	Mark	Notes	
14. (a)		-8 (8) 1210812	2	B2	for all correct (B1 for 3 correct)
(b)		Points	2	B1	Allow $\pm 1 / 2 \mathrm{sq}$ ft from table if at least B1 scored in (a)
		Curve		B1	ft if B1 for points Award for single curve (not line segments) which does not miss more than one plotted point by more than $1 / 2$ square
					Total 4 marks

15. (a)(i)	2×58	116	2	B1	cao
(ii)	eg angle at the centre $=2 \times$ angle at the circumference			B1	Three key points must be mentioned 1. angle at centre/middle/O/origin 2. twice/double/ $2 \times$ or half $/ \frac{1}{2}$ as appropriate 3. angle at circumference/ edge/ perimeter/arc (NOT e.g. angle B, angle $A B C$, angle at top, angle at outside)
(b)(i)	180-58	122	2	B1	cao
(ii)	eg sum of opposite angles of a cyclic quadrilateral $=180^{\circ}$			B1	Accept reason which includes 'opposite' and 'cyclic' and nothing incorrect Also award if (b)(i) is correct and reason is given as 'angle at the centre $=2 \times$ angle at the circumference' oe Ignore additional reason(s)
					Total 4 marks

Q	Working	Answer	Mark	Notes	
17. (a)	$\frac{8.6 \times(1+0.2)}{(1-0.2)} \text { or } \frac{10.32}{0.8}$		2	M1 for correct substitution	
		12.9 oe		A1	
(b)	$\mathrm{T}(1-\mathrm{e})=\mathrm{n}(1+\mathrm{e})$		5	M1 removes fractions	
	$\mathrm{T}-\mathrm{e} \mathrm{T}=\mathrm{n}+\mathrm{en}$			M1 expands brackets	
	$\mathrm{en}+\mathrm{eT}=\mathrm{T}-\mathrm{n}$			M1 collects terms	
	$\mathrm{e}(\mathrm{n}+\mathrm{T})=\mathrm{T}-\mathrm{n}$			M1 factorises	
		$\frac{T-n}{T+n}$		A1 for $\frac{T-n}{T+n}$ oe	
					Total 7 marks

18.	$\begin{aligned} & 8.3^{2}-7.2^{2} \\ & =68.89-51.84=17.05 \end{aligned}$		5	M1	for $8.3^{2}-7.2^{2}$
	$\sqrt{8.3^{2}-7.2^{2}}=4.129 .$.			M1	for $\sqrt{8.3^{2}-7.2^{2}}$
	tan and $\frac{4.129 \ldots \text {..." }}{3.9}$			M2	M1 for tan and $\frac{3.9}{\text { "4.129..." }}$ Accept CD rounded or truncated to at least 1 dp (4.12916...)
		46.6		A1	Accept answer rounding to 46.6 (4.1 $\rightarrow 46.43$... $4.12 \rightarrow 46.57 . .$. $4.13 \rightarrow 46.64 . .$.

Alternative methods for Q18 appear on the next two pages.

Question 18 Alternative methods

Working	Answer	Mark	Notes
$\begin{aligned} & 8.3^{2}-7.2^{2} \\ & =68.89-51.84=17.05 \end{aligned}$		5	M1 for $8.3^{2}-7.2^{2}$
$\begin{aligned} & \sqrt{8.3^{2}-7.2^{2}}=4.129 \ldots \\ & \sqrt{4.129^{2}+3.9^{2}}=5.679 \ldots \end{aligned}$			M1 for $\sqrt{8.3^{2}-7.2^{2}}$
$\cos \text { and } \frac{3.9}{" 5.679 "}$			M2 M1 for cos and $\frac{" 5.679 "}{3.9}$ Accept BC rounded or truncated to at least 1 dp (5.67978...)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Working	Answer	Mark	Notes
$\begin{aligned} & 8.3^{2}-7.2^{2} \\ & =68.89-51.84=17.05 \end{aligned}$		5	M1 for $8.3^{2}-7.2^{2}$
$\begin{aligned} & \sqrt{8.3^{2}-7.2^{2}}=4.129 \ldots \\ & \sqrt{4.129^{2}+3.9^{2}}=5.679 \ldots \end{aligned}$			M1 for $\sqrt{8.3^{2}-7.2^{2}}$
sin and $\frac{" 4.129 "}{" 5.679 "}$			M2 M1 for sin and $\frac{" 5.679 "}{44.129 "}$ Accept CD rounded or truncated to at least 1 dp (4.12916...) and BC rounded or truncated to at least 1 dp (5.67978...)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Working	Answer	Mark	Notes
Correct method for finding $\angle \mathrm{A}$		5	$\text { M1 eg for } \cos \angle A=\frac{7.2}{8.3}\left(\angle A=29.83 \ldots .^{\circ}\right)$
$\sqrt{11.1^{2}+8.3^{2}-2 \times 11.1 \times 8.3 \cos 229.8 "}$			M1 for correct Cosine Rule expression for calculating BC
$\cos \text { and } \frac{3.9}{" 5.679 "}$			M2 M1 for cos and $\frac{\text { " } 5.679 "}{3.9}$ Accept BC rounded or truncated to at least 1 dp (5.67978...)
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Working	Answer	Mark	Notes
Correct method for finding $\angle \mathrm{A}$		5	$\text { M1 eg for } \cos \angle A=\frac{7.2}{8.3}\left(\angle A=29.83 \ldots{ }^{\circ}\right)$
$\sqrt{11.1^{2}+8.3^{2}-2 \times 11.1 \times 8.3 \cos 229.8 "}$			M1 for correct Cosine Rule expression for calculating BC
$\sin B=\frac{8.3 \sin " 29.8 "}{" 5.68 "}$			M2 for correct expression for $\sin B$ M1 for correct statement of Sine Rule eg $\frac{\sin B}{8.3}=\frac{\sin " 29.8 "}{" 5.68 "}$
	46.6		A1 Accept answer rounding to 46.6
			Total 5 marks

Q	Working	Answer	Mark	Notes
19. (a)		$3 t^{2}-10 \mathrm{t}$	2	B2 B1 for $3 t^{2}$ or - 10t Ignore further differentiation seen in body or on answer line
(b)	$6 t-10=20$		2	M1 for linear expression including either 6t or -10
		5		A1 ft from "6t-10" = 20 if M1 scored
				Total 4 marks

20. (a)			14	1	B1
(b)		9	1	cao	
	(c)(i)		6	3	cao
(ii)			3	B2	B1 for 2 correct
			11		B1
	cao				

21.	$\begin{aligned} & 12 \times 12 \\ & =18(d-18) \end{aligned}$	$\begin{aligned} & 12 \times 12 \\ & =18 \mathrm{x} \end{aligned}$		4	M1	or for $r^{2}=12^{2}+(18-r)^{2}$
	$144=18 d-324$	$\mathrm{X}=8$			M1	or for $\mathrm{r}^{2}=144+324-18 r-18 r+r^{2}$
	$18 \mathrm{~d}=468$	(d=) $8+18$			M1	or for $36 \mathrm{r}=468$
			26		A1	dep on all method marks
						Total 4 marks

Alternative methods for Q21 appear on the next page.

Method 1

Working	Answer	Mark	Notes		
Complete, correct method for finding $\angle A O M$ or $\angle \mathrm{BOM}$ or $\angle \mathrm{OAB}$ or $\angle \mathrm{OBA}$		4	$\begin{array}{ll} \text { M1 } \quad \text { eg } \tan \angle A L M=\frac{12}{18} \\ & \angle A L M=33.69^{\circ} \\ & \angle A O M=2 \times 33.69^{\circ} \\ & =67.38^{\circ} \end{array}$	$\begin{aligned} & \mathrm{AL}=\sqrt{12^{2}+18^{2}}=\sqrt{468}=21.63 \mathrm{~cm} \\ & \cos \angle \mathrm{ALB}=\frac{468+468-576}{2 \times 468}=0.3846 \\ & \angle \mathrm{ALB}=67.38^{\circ} \\ & \angle \mathrm{ALM}=33.69^{\circ} \\ & \angle \mathrm{AOM}=2 \times 33.69^{\circ}=67.38^{\circ} \end{aligned}$	$\begin{aligned} & \tan \angle \mathrm{ALM}=\frac{12}{18} \\ & \angle \mathrm{ALM}=33.69^{\circ} \\ & \angle \mathrm{OAM} \\ & =90^{\circ}-2 \times 33.69^{\circ} \\ & =22.62^{\circ} \end{aligned}$
Correct numerical expression for length of OA or OM			M1 eg $\frac{12}{\sin 67.38^{\circ}}$ or $\frac{24 \sin 22.62^{\circ}}{\sin 134.76^{\circ}}(=13)$ or $\frac{12}{\tan 67.38^{\circ}}$ or $12 \tan 22.62^{\circ}(=$		
Length of OA or OM used to find diameter			$\begin{array}{ll} \text { M1 } & \text { eg } 2 \times \text { " } 13 \text { " or } 2 \times(18-" 5 ") \\ & \text { dep on both previous M1s } \end{array}$		
	26		A1 dep on all method marks Accept answer rounding to 26.0		
			\square Total 4 marks		

Method 2
\qquadWorking Answer Mark Notes $\mathrm{AM}=12, \mathrm{OM}=5, \mathrm{OA}=13$ and $13+5=18$ or $18-5=13$ 4 M 3 for use of Pythagorean triple 5-12-13

Note
The mark scheme for an alternative method for Q22 is on the next page.

Question 22 Alternative method

Working	Answer	Mark	Notes	
$x=\frac{y-4}{3}$		7	B1 for correct rearrangement	
$\left(\frac{y-4}{3}\right)^{2}+y^{2}=34$			M1 for correct substitution	
$\begin{aligned} & \frac{y^{2}-4 y-4 y+16}{9}+y^{2}=34 \text { or } \\ & y^{2}-4 y-4 y+16+9 y^{2}=3060 \\ & r \frac{y^{2}-8 y+16}{9}+y^{2}=34 \\ & \text { or } y^{2}-8 y+16+9 y^{2}=306 \end{aligned}$			B1 (indep) for correct expansion of $(y-4)^{2}$ even if unsimplified	
$10 y^{2}-8 y-290(=0)$			B1 for correct simplification Condone omission of ' $=0$ '	
$\begin{aligned} & (5 y-29)(y+5)(=0) \\ & (5 y-29)(2 y+10)(=0) \\ & (10 y-58)(y+5)(=0) \\ & \text { or } \frac{8 \pm \sqrt{11664}}{20} \text { or } \frac{4 \pm \sqrt{2916}}{10} \\ & \text { or } \frac{4}{10} \pm \frac{\sqrt{2916}}{10} \text { or } \frac{2}{5} \pm \frac{\sqrt{729}}{5} \end{aligned}$			B1 for correct factorisation Condone omission of ' $=0$ ' or for correct substitution into the quadratic formula and correct evaluation of ' $b^{2}-4 a c$ ' or for using square completion correctly as far as indicated	
$y=5 \frac{4}{5}$ or $\mathrm{y}=-5$			A1 for both values of y	
$\begin{array}{r} x=\frac{3}{5}, y=5 \frac{4}{5} \\ x=-3, y=-5 \end{array}$			A1 for complete, correct solutions	
			Total 7 marks	

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit www.edexcel.com Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 441204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

